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SUMMARY 
An inequality is demonstrated involving the rate of production 

S of mean-square vorticity in isotropic turbulence and a factor y 
which may be said to allow for intermittency or for the non- 
vanishing of fourth-order cumulants. An extreme state, corres- 
ponding to equality of this relationship, occurs if S = 0.64 and 
y = 2.14. The experimental values are S = 0.4 and y = 4. 
Another kinematical relation shows that the mechanism of vorticity 
production resembles collision between fluid particles rather than 
the swirling of contracting jets. 

1.  INTRODUCTION 
When the motion of a fluid is turbulent, the fluctuations of the vorticity 

are of major importance. For isotropic conditions they are directly related 
to energy dissipation by viscosity. They also show a sufficient degree of 
isotropy and homogeneity in general to justify the corresponding simplific- 
ations of the theory. 

These fluctuations obey a system of equations in which the pressure 
does not appear and thereby the degree of complication is reduced. Accord- 
ing to these equations, viscosity tends to eliminate vorticity, by a well- 
understood process. These equations also show that the mean-square 
vorticity can be increased by inertial effects. This aspect of the problem is 
still somewhat mysterious. What determines this production of vorticity 
and how does it occur? 

The problem has been stated in terms of correlation functions, but this 
procedure leads to a number of unknowns always larger than the number of 
equations. 

The Fourier transforms of the correlations can be introduced, amounting 
to a spectral analysis of a sample of turbulent flow. They lead to a relation 
between vorticity production and the rate of energy transfer from large 
eddies to small eddies. Each hypothesis concerning energy transfer has 
thus been followed by an evaluation of the rate of production of vorticity. 

In  this paper, we investigate the largest rate of production of vorticity 
compatible with the requirements of isotropy, homogeneity and incom- 
pressibility. We find an upper bound for the rate of vorticity production, 
although it depends upon a fourth-order mean value and therefore does 



498 R. Betchov 

u. = *,1 

not constitute an absolute maximum. Comparison with old and new 
experimental data indicates that a turbulent flow produces vorticity at 
about 50% of this limiting rate. I t  is quite possible that dynamical effects 
are responsible for this factor and that we are confronted by an extreme 
state of affairs, characteristic of turbulent flows. 
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By (1) we have 

a + b + c  = 0, 

(3) 

(4) 
and consequently b and c must be of the same sign and a and b of opposite 
sign. 

We shall make use of the general Cauchy inequality (Hardy et al. 1952) 

We shall also use the following identities, 
(a3 + b3 + c3)2 < (az + b2 + c2)(a4 + b4 + 8) (5 1 

with equality if a = b = c. 
obtained by raising both sides of (4) to powers 2, 3 and 4, 

(6 )  i a2 + b2 + c2 = - 2(ab + bc + CU), 

a3+b3+c3 = 3abc, 
a 4 + b 4 + 8  = i(d+b2+c2)2. 

Values of a, b and c for which the two sides of (5) are nearly equal are 
excluded by the incompressibility condition. Indeed, when a, b and c 
satisfy (4), the ratio of the left-hand side to the right-hand side of (5) has a 
maximum value of Q at - a = 2b = 2c. This allows a factor Q to be inserted 
on the right-hand side of (9, and so, with the use of (6), we have 
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I t  is known that the set of eigenvalues of a tensor is invariant to trans- 
formations of the coordinates; therefore each term of (7) is invariant. 
Indeed, each term can be expressed by invariants such as sii sir or sir s jk  Ski .  

Consequently (7) remains valid if we pass to a fixed system of coordinates, 
independent of the orientation of the a-, b-, and c-axes. We now consider 
an ensemble of points of the fluid, each with its own set of eigenvalues 
with respect to these fixed axes, and average both sides of (7). We can use 
a space, a time or an ensemble average. Then, with ( ) indicating the 
average, we have 

The right-hand side of (8) cannot be measured by conventional methods 
and comparison with experimental results is not possible unless we introduce 
a modified inequality. We can write a single inequality involving N sets 
of eigenvalues, viz. 

By taking (4) and (6) into account, and introducing the average as a limit 
for large N,  the inequality (9) becomes 

1 
3 43 

I(abc)[ < - (a2+b2+C2)1/2(a4+b4+8)1/2.  

The right-hand side of (8) is always less than or equal to the right-hand 
side of (lo), with equality if a, b and c do not fluctuate. If, in addition, 
a = - 2b = - 2c, the two sides of (10) are equal. In  view of (6), the ratio 
of right-hand sides of (8) and (10) depends only upon the probability 
distribution of a2+b2+c2.  In  the case of a Gaussian probability distri- 
bution of a2 + b2 + c2, the right-hand side of (8) is only 8% smaller than that 
of (10). In  general, this ratio is close to unity, unless the probability 
distribution has a pronounced peak at the origin. Thus, the inequality (10) 
is not much weaker than (8). 

3. RELATIONS WITH MEASURABLE QUANTITIES 

The various invariants occurring in (10) can be measured with a single 
hot-wire anemometer. This has been done in the turbulence produced 
by a grid obstructing a parallel flow of air. The hot-wire is located 
sufficiently far down-stream to give some guarantee of isotropic conditions, 
and its orientation is normal to the mean flow. The turbulence passes by 
the wire with a mean velocity about one hundred times larger than the 
velocity fluctuations, and consequently the time derivative of the hot-wire 
signal corresponds reasonably well to the space derivative of the velocity. 
With index 1 denoting the direction of mean flow, this means that the 
differentiated signal is proportional to ql. 

At any 
particular instant, the hot-wire responds to a fluid particle whose principal 

Let us find the relation between ul,l and the invariants of (10). 
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axes of rate of strain can be specified. Let $ be the angle between the 
1-axis and the a-axis (latitude) and $J be the angle between the c-axis and a 
direction normal to the a-axis and 1-axis (longitude). It then follows from 
tensor calculus that 

ul,l = a cos2$ + b c o s 2 ~  sin2$ + c sin2$ sin2$. (11) 
The vorticity does not contribute to this particular signal, but this is peculiar 
to the component u ~ , ~ ,  

In  the course of time the hot-wire is coincident with different fluid 
particles and the angles C$ and # vary as well as the eigenvalues a, 6 ,  c. The 
eigenvalues are absolute quantities. Consequently, if the turbulence is 
isotropic, the angles must be statistically independent of the eigenvalues. 
T o  clarify this point let us consider all fluid particles for which a = 1, 
b = -0.7, c = -0.3. If, in the average over these particles, we find a 
definite orientation of the principal axis, we can use the numbers 1, -0.7, 
-0.3 to specify a direction. Such a direction would remain invariant to 
a rotation of the coordinates and this would reveal a lack of isotropy. 
Therefore, we must admit that, for any set of values of a, b, c, the orientation 
of the principal axis are random ; that is, we have statistical independence 
of eigenvalues and orientations. 

With (1/4v)sin $ d+ d$ as the probability of finding + and $ inside a small 
solid angle, and statistical independence, we find 

(12) 
2 ( u Z ~ )  = ( a 2 + b 2 + C 2 ) .  

The same method can be used to demonstrate 

Some of these results have been derived by others from correlation functions. 
When the following non-dimensional parameters are introduced, 

the inequality (10) can be expressed as: 
2 

42 1 (16) IS1 < - yl‘? 

For normally distributed velocities we have y = 3, and in that case 
IS1 < 0.756. 

In  the extreme case - a  = 2b = 2c = constant, we find by (12), (13) 
and (14), y = 2.14, JS/ = 0.638. Proudman & Reid (1954) calculated 
the value of S with the assumptions of no viscosity, zero initial triple 
correlations and a relation between three-point quadruple velocity correla- 
tions and double correlations appropriate for normal probability distribution. 
They found S = 0.78, and by (16) this implies y 3 3.2. This seems to 
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mean that the four-point quadruple correlations could not satisfy exactly a 
similar relation with double correlations, since this would imply y = 3. 

4. EXPERIMENTAL RESULTS 

The numerous measurements of S and y by Townsend (1947, 1948, 
1951) gave S =  0.38, y = 4. Later Stewart (1951) found values of S 
decreasing with increasing Reynolds number of the turbulence, in the 
range S = 0.5 to 0-3. From the measurements of (a2u,/ax:) by Liepmann 
et al. (195 1) one can find S, by making use of the vorticity equation. The 
resulting values of S increase from 0.4 to 0.5 with increasing Reynolds 
numbers. 

The author measured S and y for a variety of meshes and with improved 
electronic devices in the low-turbulence wind tunnel of the University of 
Maryland. The hot-wire signal was carefully compensated for thermal 
inertia. A simple low-pass filter was used to avoid excessive electronic 
noise, and it was verified that the filter did not affect the measurements of 
mean cubes. 

T o  measure mean squares and mean cubes, I used chains of biased 
diodes. For mean fourth power, I first obtained the instantaneous square 
with a quarter-square multiplier using four chains of diodes. 

The first grids used were of 2.5cm mesh, with 38 and 66% open 
area and air velocities of 2 to 20 mlsec. The wire was located at distances 
from 30 to 100 mesh lengths from the grid. The results consistently 
indicated S= 0.4 _+ 0.1, without systematic variation. 

With a grid of 0.6cm mesh, 21% open area and a wind of 4m/sec I 
found S= 0-4 f 0.05 at distances of 20 to 150 mesh lengths. With a first 
grid of 2.5 cm and 54% open area, followed at 125 cm downstream by a 
second grid of 1.25 cm and 76% open area, I found S= 0.4 at a distance 
of 200cm from the first grid. When several strips of paper tape were 
added to the first grid the turbulence was considerably altered thereby, 
but S was found to be unchanged. 

In  a crude pipe flow and in the wake behind a cylinder, I again found 
S=0.4. The central part of a turbulent boundary layer gave the same 
result. 

Only a few measurements of y were made, and they indicate y = 4 f 0.5. 
The constancy of S is remarkable, and holds at Reynolds numbers 

lower than those for which Kolmogoroff's theory might be expected to be 
valid. Comparison with the inequality (16) shows that the experimental 
value of S/y1I2 corresponds roughly to 50% of the maximum permissible 
value. With y = 4, the inequality requires IS/ < 0.872. 

5. PRODUCTION OF VORTICITY 

We shall now introduce the dynamical equations. With additional 
indices to indicate successive derivatives, we write the Navier- Stokes 
equations as 

&[/at + U k  u[,k - VUi,kk = - Pi/p, (17) 
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where v is the kinematical viscosity, P the pressure and p the density. 
After differentiating with respect to xi, multiplication by uij ,  summation 
in i andj,  and averaging we obtain 

For the first term we can write, with reference to (2), 

( u ~ , ~ z + )  = (a2+b2+c2)+2(A2+B2+C2). (19)  
We now consider the invariant ( u ~ , ~ u ~ , ~ } .  
pressible flow, we have 

In homogeneous and incom- 

(20) 
a 

(u .  .u .) = - ( U i U j , $ )  = 0, 
a 5  Z , j  L a  

giving the following relation between the mean-square vorticity and the 
mean-square rate of strain : 

The invariant ( u k  U#, jUi , jk)  also vanishes, either by homogeneity or by 
isotropy. The viscous term 
can be related to the vorticity or the rate of strain, and can also be written as 

The invariant ( U ~ , ~ U ~ , ~  u k , j )  can be written as (u, . ,~ uj ,k .ui ,k) ,  where the 

( a 2 + b 2 + c 2 )  = 2(A2+B2+C2).  (21) 

Also, for the same reasons, (Pijuj,*) = 0. 

(Ui , jUi , jkk)  = - (%,jk %,jk ). (22) 

(u i , jU j ,kUi ,k )  = (a3+b3+c3)- (aA2+bB2+CC2). (23) 

sequence of indices must be noted. 

Let us consider the invariant (ui ,*uj ,k  u k , i ) ,  where the index sequence is 
now different. This quantity vanishes because it can be expressed as the 
divergence of a vector ; 

With the use of (2), it becomes 

(24) 
a 

(ui,juj,kuk,i) = z, ( u i , ~ u j , k u k - ~ u i u k , j u j , k )  = O. 

Equation (24) is a relation imposed by homogeneity, and with the use of 
(2) it becomes 

This relation is comparable with (21) in that it is purely kinematical. The 
right-hand side describes the stretching of vortex lines, as discussed by 
Taylor (1938). 

We can now use relations (19),  (21)) (22), (23), and (25) and rewrite the 
dynamical equation (18 )  as 

(a3+b3+C3) = - 3 (aA2 + bB2 + cC2). (25) 

The viscous term is always positive and indicates dissipation of vorticity. 
Production of mean-square vorticity occurs if (abc) < 0, which is equi- 
valent to S > 0. Our inequalities therefore specify a maximum rate of 
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production of vorticity with a limit determined by mean square and mean 
fourth powers of the eigenvalues. 

We will say 
that the flow is intermittent if u ~ , ~  = 0 in a variety of large and well defined 
regions, occupying a fraction a of the space filled by the fluid. The distri- 
bution of these regions can be isotropic and homogeneous and they can 
eventually have a size comparable with the integral scale of the turbulence. 
The quantities S and y can be measured as previously or similar quantities 
S' and y' can be obtained by averaging only over those regions where 
uin3 fluctuates. It follows from (15) that S' = y/( 1 - a)S and y' = (1 - a)y. 
Hence S'ldy' is independent of a, and this means that the presence of y 
in (16) allows for possible intermittency of the flow. 

The factor y' is related to quadruple four-point correlations, and one 
could perhaps assume that, within the regions of finite u ~ , ~ ,  the fourth order 
cumulants vanish. Observation of turbulent 
flows suggests that y and a fortiori yf  are not very different from 3, and 
that This means that S could not exceed a 
value of about 0.9 without serious intermittency or without non-zero 
fourth order cumulants. 

Let us examine the effect of intermittency of the flow. 

This would give y' = 3. 

is mildly intermittent, 

6. A REMARK ON VORTICITY PRODUCTION 

From (6) and (25), we have the important relation 
- (abc)  = ( a A 2  + bB2 + cC2). 

In  a different form, this relation was first written by Townsend (1951). 
We must remember that b and c are of the same sign and that a is the largest 
eigenvalue. Thus abc has the sign of a and, for production of vorticity, 
we must have a predominance of points at which a < 0. 

If a < 0, the flow behaves locally as a jet parallel to the a-axis and 
impinging on a wall represented by the b- and c-axes. The dynamic 
equations show that A (the vorticity component normal to the wall) is 
attenuated, and that B and C are amplified. If this situation lasts long 
enough, we shall find, for any initial vorticity, that aA2 + bB2+ cC2 > 0. 
This situation is therefore such that both sides of (27) are positive. If 
a > 0, the flow behaves locally as if it were entering a contraction cone. 
A small fluid sphere is deformed into a cigar-shaped ellipsoid. Only A is 
amplified, and if this situation lasts long enough, it will contribute positively 
to the right-hand side of (27) and negatively to the left-hand side. 

It is clear, therefore, that production of vorticity is associated essentially 
with a < 0 and amplification of B and C. This suggests that the most 
important processes associated with production of vorticity and energy 
transfer resemble a jet collision and not the swirling of a contracting jet. 

7. REMARK ON CONTINUITY 

So far, we have not mentioned any requirement of continuity, and the 
existence of second derivatives of the velocity has been assumed implicitly. 
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This question is of major interest, especially in the case of very small 
viscosity. Let us consider the extreme case of our inequality, that is, 
a = - 2 b  = - 2 c  = constant. Equations ( 2 1 )  and (25) impose some 
restrictions on the vorticity, and it turns out that they involve only ( A 2 )  
and (B2 + Cz). This leaves a great freedom in the choice of the vorticity 
and the orientation of the principal axes. However, this does not guarantee 
that we can connect smoothly the values of at a point with its values at 
some other point. When the viscosity is very small the momentum equation 
can conceivably include large values of u ~ , ~ ~ ,  but there may be a limit to the 
type and magnitude of the viscous terms. This leads to the following 
question: Is it possible to construct a velocity field with maximum (abc ) ,  
isotropic and homogeneous properties and such that it satisfies the momen- 
tum equations ? I n  the limit of vanishing viscosity discontinuities of 
ui,i occur, and we can ask whether the condition a = - 2b = - 2c = constant 
makes the flow everywhere discontinuous or whether we can choose the 
other components of in such a way that the discontinuities occur only 
along isolated surfaces (shear layers). The  answer to such questions could 
very well lead to a lower maximum value of S and eventually close the gap 
between experiments and theory. 
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